

BURNISHING PROCEDURE

>>> Introduction to Burnishing

The initial, out-of-box torque on new clutches and brakes may be inconsistent and/or perform 30-40% below the catalog value until the friction interface (BOTH the friction facing and friction rotor) has been properly burnished. (NOTE: Low coefficient of friction materials may experience a decrease in torque when burnished, as intended.)

Two Basic Goals of Burnishing Friction Material:

- Create full surface contact by evenly wearing down asperities on a new facing
- Embed a **transfer layer** of friction material onto the rotor surface

Full Surface Contact:

Areas of friction facing in contact with the disc or rotor darken when dissipating friction energy.

New Friction Facing

Fully Burnished Facing

Transfer Layer:

Friction facings develop a more consistent coefficient of friction against the embedded friction material than the bare metal of the disc or rotor.

>>> Burnishing Theory

A proper burnishing procedure introduces energy into the unit such that the interface maintains a maximum temperature of 200°F long enough to achieve **full surface contact** and develop a **transfer** layer.

Constant Slip Method

Thermal Power = Rotational Speed x Torque

Cyclic Method

Thermal Power = $^{1}/2$ **x** Moment of Inertia **x** Rotational Speed² **x** Cycle Rate

BURNISHING PROCEDURE

Nexen's Burnishing Method

Continuous Rotational Speed = 250 RPM

Interface Temperature = 200°F

(Proper use of a non-contact IR sensor is recommended.)

Pressure = Adjusted for Burnishing Temperature

(As transfer layer develops, pressure needs to be adjusted regularly to compensate for the changing coefficient of friction.)

Time* = 4 + hours at Temp. (Estimate)

PROS: Medium burnishing time, low torque requirements

CONS: Slight risk of overheating, generates dust

Select a Burnishing Method that Fits Your Application

>>> Alternative Methods

Constant Slip: High Speed/Low Torque

Continuous Rotational Speed = 750 RPM

Interface Temperature = 200 °F

Pressure = Adjusted for Burnishing Temperature

(As transfer layer developes, pressure needs to be adjusted regularly to compensate for the changing coefficient of friction.)

Time* = 1 to 2 hours at Temp. (Estimate)

PROS: Fast burnishing time, low torque requirements **CONS:** Higher risk of overheating, generates dust

Constant Slip: Low Speed / High Torque

Continuous Rotational Speed = 1 to 10 RPM (Or max application speed if less than 750 RPM)

Interface Temperature = 200°F

Pressure = Full Engagement

(Adjust to prevent stalling the shaft)

Time* = 4 to 8 hours at Temp. (Estimate)

PROS: Low risk of overheating material

CONS: High torque requirements, slow burnishing time,

may create noise

Cyclic Method

Pressure = Full Engagement

Continuous Rotational Speed = Adjusted for Thermal Dissipation

Burnishing Thermal Power < Continuous Thermal Power Dissipation

(Continuous Thermal Dissipation found in catalog)

Time* = 1 to 2 hours at Temp. (Estimate)

PROS: Rapid burnishing

CONS: Generates dust, calculations necessary to prevent

overheating and damage

CAUTION: These burnishing methods generate friction material dust. Ensure all appropriate air quality and PPE requirements are being addressed.

Have questions?

Email us at TSR@nexengroup.com

Or find your local rep at: https://www.nexengroup.com/nxn/contactus/salesreps